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Three-way-output response system by electric potential: UV–vis,
CD, and fluorescence spectral changes upon electrolysis of the
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Abstract—The newly prepared tetracyanoanthraquinodimethane (TCNAQ) derivatives 1a,b with a chiral auxiliary are good elec-
tron acceptors and exhibit weak circular dichroism (CD) based on the absorption of TCNAQ. The twin-type electron acceptor 1c
with two TCNAQ units shows larger ellipticity by exciton coupling. UV–vis, CD, and fluorescence spectra were changed drastically
upon electrochemical reduction of 1c, which demonstrates the unprecedented three-way-output response system.
� 2004 Elsevier Ltd. All rights reserved.
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Electrochiroptical materials are the novel class of multi-
output response systems, by which the electrochemical
input is transduced into two kinds of spectral outputs,
that is UV–vis and circular dichroism (CD). Compared
with the extensive studies on the electrochromic material
giving the UV–vis spectral change as a sole output,1

there have been only a few successful examples of two-
way-output redox systems reported so far.2 Further-
more, there is no precedent that shows spectral outputs
more than three kinds upon electrolysis. During the
course of our continuing study on the electrochromic
systems, we have found that the title electron acceptor 1
is a promising candidate as a novel three-way-output
response system (Scheme 1). This material has been
designed from the following viewpoints: (1) the tetra-
cyanoanthraquinodimethane (TCNAQ) moiety will
work as a strong chromophore, which induces UV–vis
spectral change upon electrolysis,3 (2) the chiroptical
output will be obtained when this chromophore is
attached with an asymmetric element like a chiral ester
group, (3) the nonfluorescent TCNAQ will become
fluorescent upon reduction thanks to the anthracene
skeleton produced in the anionic state. The last point
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has never been considered before. Here we report a
successful example of the unprecedented multi-output
response system giving three-way spectral changes (UV–
vis, CD, and fluorescence) upon electrolysis.

Reactions of anthraquinone-2-carbonyl chloride with
(�)-borneol and (�)-menthol gave the chiral anthra-
quinone derivatives 3a,b, which were then reacted with
malononitrile4 to give the chiral TCNAQ derivatives
1a,b in 69% and 62% yield, respectively, over two steps
(Scheme 2).5 By starting with (2R, 4R)-(�)-pentane-2,4-
diol, twin-type compound 1c connected with the chiral
spacer could be prepared in 87% yield via 3c.

According to the voltammetric analysis, reduction
potential of 1a (Ered, �0.31V vs SCE in CH3CN) and 1b
(�0.32V) are close to the 2e-reduction potential of the
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Figure 3. Changes in the CD spectrum of 1c (4.4· 10�5 mol dm�3 in

CH3CN containing 0.05mol dm�3 n-Bu4NBF4) upon constant-current

electrochemical reduction (27lA at 4min interval) to 2c.
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TCNAQ–methyl ester (1d, R�¼Me, �0.31V),6 indicat-
ing that the reduction wave in 1a or 1b also corresponds
to the reversible 2e-process. Neutral acceptors 1a,b are
light yellow and nonfluorescent. As shown in Figures 1
and 2, the electrochemical reduction of 1a,b to 2a,b
caused a continuous UV–vis spectral changes, and vivid
color change to violet corresponds to the growing new
broad band in the visible region (kmax 575 nm for 1a and
576 nm for 1b), which is characteristic to the TCNAQ
dianion.3 The isosbestic points observed in the spectra
are indicative of a clean transformation from 1a,b to
2a,b as well as of the negligible steady-state concentra-
tion of the intermediate anion radical. The latter comes
from the dynamic redox properties of TCNAQ: much
easier reduction of the twisted TCNAQ�� to the
TCNAQ2� than the TCNAQ to the butterfly-shaped
Figure 2. Changes in the UV–vis spectrum of 1b (3.5· 10�5 mol dm�3

in CH3CN containing 0.05mol dm�3 n-Bu4NBF4) upon constant-cur-

rent electrochemical reduction (29lA at 4min interval) to 2b.

Figure 1. Changes in the UV–vis spectrum of 1a (2.0· 10�5 mol dm�3

in CH3CN containing 0.05mol dm�3 n-Bu4NBF4) upon constant-cur-

rent electrochemical reduction (29lA at 4min interval) to 2a.
TCNAQ��.3;4a;7 The one-wave 2e-reduction process of
TCNAQ unit is favorable for constructing the reversible
electrochromic systems because of the lack of destruc-
tive side reactions from the open-shell species.7;8 After
the electrolysis, the solutions became fluorescent (kem

534 nm for 1a and 533 nm for 1b in CH3CN). However,
the CD signals of 1a,b are too weak (jDej6 1:5) to be
used as spectral outputs, so we finally gave up con-
structing the novel three-way-output response system by
using 1a,b.

On the contrary, the twin-type compound 1c is much
more CD active [kðDeÞ 367 (þ4.15), 324 (�5.61), 304
(�1.45), 285 (�28.1), 270 (þ3.93), 229 (�7.14) nm in
CH3CN]. The couplet originated from characteristic
TCNAQ absorption (300–400 nm) suggests exciton
coupling between two chromophores.9;10 The through-
space interaction between two TCNAQ units in 1c is
also evident from the less negative reduction potential
(�0.23V) than 1a,b. Since only one pair of reduction
waves were observed down to �2V, 1c may undergo
one-wave 4e-reduction to the tetraanionic species 2c.
When the electrochemical study of 1c was followed by
CD spectroscopy, drastic change was observed as shown
in Figure 3. Since the UV–vis spectrum is also changed
upon electrolysis (Fig. 4), the redox pair of 1c and 2c can
serve as a new entry of electrochiroptical system. Fur-
thermore, upon electrochemical reduction of 1c, fluo-
rescence intensity increased gradually as shown in
Figure 5. This is the first successful example by which
the electrochemical input is transduced into three inde-
pendent spectral outputs. Studies on other twin-type
TCNAQs11 are now under way.
Figure 4. Changes in the UV–vis spectrum of 1c (2.7 · 10�5 mol dm�3

in CH3CN containing 0.05mol dm�3 n-Bu4NBF4) upon constant-

current electrochemical reduction (29lA at 4min interval) to 2c.



Figure 5. Changes in the fluorescence spectrum of 1c

(2.7· 10�5 mol dm�3 in CH3CN containing 0.05mol dm�3 n-Bu4NBF4)

upon constant-current electrochemical reduction (28lA at 4min

interval) to 2c (kex ¼ 400nm).
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